martes, 27 de marzo de 2012


ANTECEDENTES DE LA BIOTECNOLOGÍA .

La historia de la biotecnología puede dividirse en cinco períodos. 

 LA ERA PRE-PAUSTER.

 El primer período corresponde a la era anterior a Pasteur y sus comienzos se confunden con los de la humanidad. En esta época, la biotecnología se refiere a las prácticas empíricas de selección de plantas y animales y sus cruzas, y a la fermentación como un proceso para preservar y enriquecer el contenido proteínico de los alimentos. Este período se extiende hasta la segunda mitad del siglo XIX y se caracteriza como la aplicación artesanal de una experiencia resultante de la práctica diaria. 

Era tecnología sin ciencia subyacente en su acepción moderna. En el período anterior a Pasteur, la biotecnología se limitaba a la aplicación de una experiencia práctica que se transmitía de generación en generación. En las civilizaciones más antiguas de todo el mundo, eran utilizados emplastos de lodos y plantas machacadas, aplicadas directamente sobre heridas y abscesos, ya que desde entonces eran conocidas sus propiedades antibióticas. Desde luego, aquellos hombres ignoraban que en esos lodos podrían existir microorganismos como el Streptomices lincolnensis, de donde se aisló la lincomicina. A través de la historia, la gente ha creado explicaciones para las enfermedades. Muchas de éstas se han considerado de origen espiritual un castigo por los pecados de una persona o como el comportamiento caprichoso de los dioses o los espíritus.


 Desde tiempos antiguos, la teoría biológica más comúnmente sostenida fue que la enfermedad era atribuible a algún tipo de desequilibrio de los humores del cuerpo (líquidos hipotéticos que fueron descritos por sus efectos, pero no fueron identificados químicamente). Por tanto, durante miles de años el tratamiento de la enfermedad consistió en suplicar a los poderes sobrenaturales a través de ofrendas, sacrificio o rezos, o tratando de ajustar los humores del cuerpo induciendo el vómito o provocando hemorragia o purgas. Sin embargo, la introducción de la teoría de los gérmenes en el siglo XIX cambió radicalmente la explicación de la causa de las enfermedades, así como la naturaleza de su tratamiento.

 Desde el siglo XVI se especuló que las enfermedades tenían causas naturales y que los agentes eran exteriores al cuerpo, y que, por tanto, la ciencia médica debía consistir en identificar esos agentes y encontrar sustancias químicas para contrarrestarlos. Pero nadie sospechó que algunos de los agentes causales de la enfermedad pudieran ser invisibles, puesto que tales organismos no habían sido descubiertos ni aun imaginados. El perfeccionamiento de las lentes y el diseño del microscopio en el siglo XVII, llevó al descubrimiento de un vasto nuevo mundo de plantas y animales microscópicamente pequeños, entre ellos las bacterias y las levaduras. Sin embargo, el hallazgo de estos microorganismos no indicaba qué efectos podrían tener en los seres humanos y otros organismos.

ERA PASTEUR.  


 La segunda era biotecnológica comienza con la identificación, por Pasteur, de los microorganismos como causa de la fermentación y el siguiente descubrimiento por parte de Buchner de la capacidad de las enzimas, extraídas de las levaduras, de convertir azúcares en alcohol. 

Estos desarrollos dieron un gran impulso a la aplicación de las técnicas de fermentación en la industria alimenticia y al desarrollo industrial de productos como las levaduras, los ácidos cítricos y lácticos y, finalmente, al desarrollo de una industria química para la producción de acetona, "butanol" y glicerol, mediante el uso de bacterias.

 Con Pasteur, el conocimiento científico de las características de los microorganismos comienza a orientar su utilización práctica, pero las aplicaciones industriales se mantienen fundamentalmente como artesanales, con la excepción de unas pocas áreas en la industria química y farmacéutica (como la de los antibióticos). (3) "Pasteur inició investigaciones que le llevaron a un descubrimiento significativo: comprobó que un rayo de luz polarizada experimentaba una rotación bien a la izquierda o a la derecha cuando atravesaba una solución pura de nutrientes producidos naturalmente, mientras que si atravesaba una solución de nutrientes orgánicos producidos artificialmente no se producía rotación alguna. No obstante, si se incorporaban bacterias u otros microorganismos a la segunda solución, al cabo de cierto tiempo también hacía rotar la luz a la izquierda o la derecha.

 Cuando los químicos sintetizan un compuesto orgánico, se producen ambas formas en igual proporción, cancelando sus respectivos efectos ópticos. Los sistemas orgánicos, por el contrario, tienen un elevado grado de especificidad y capacidad para discriminar entre ambas formas, metabolizando una de ellas y dejando la otra intacta y libre para rotar la luz." Sus primeros estudios químicos le orientaron a la investigación de la fermentación y putrefacción, demostró que eran debidas a varias clases de gérmenes vivientes. 

Partiendo de aquí demostró que la generación espontánea era imposible. Demostró que en la materia altamente organizada, si los gérmenes vivos son todos destruidos, y si además el acceso de los gérmenes es controlado de tal modo que nunca al aire se le permite el libre acceso, la fermentación o la putrefacción no se producen.

 Una pieza de algodón empañada y colocada en un matraz libre de gérmenes es suficiente después de esterizarla, para mantener la orgánica solución completamente estéril. El estudio de la fermentación condujo a Pasteur a estudiar el vinagre, el vino y la cerveza. Como resultado de esta feliz investigación de fermentos fue requerido por el Emperatriz Eugenia para que se consagrase a la organización de una gran industria manufacturera para beneficio de Francia. Respondió que consideraba incompatible con la dignidad de un científico dedicar su tiempo al comercio, y mientras él estaba dispuesto para que otros se aprovechasen de la ventaja de sus descubrimientos, él deseaba dedicarse totalmente al trabajo científico. 

 Demostró, gracias a sus anteriores trabajos sobre la especificidad química, que la producción de alcohol en la fermentación se debe, en efecto, a las levaduras y que la indeseable producción de sustancias (como el ácido láctico o el ácido acético) que agrian el vino se debe a la presencia de organismos como las bacterias. La acidificación del vino y la cerveza había constituido un grave problema económico en Francia; Pasteur contribuyó a resolver el problema demostrando que era posible eliminar las bacterias calentando las soluciones azucaradas iniciales hasta una temperatura elevada. (4) "Pasteur procedió a estudiar las enfermedades de los animales y de los seres humanos. Demostró la causa bacterial del carbunco (ántrax) que había causado serios estragos en Francia entre el ganado. El organismo se extendía por contacto, real contagio. 

Demostró que las lombrices eran transportadas desde los cuerpos de animales sepultados en poca profundidad e infectaban a los que pastaban. Halló además que podía por el calor reducir la vitalidad del microbio ántrax, de tal forma que producía una leve enfermedad que protegía al ganado contra otra fatal." Después descubrió la causa del cólera en el ave. Lo cultivó artificialmente y después de un tiempo sus cultivos no producían la enfermedad en el ave, pensó que esto servía para protegerlas contra inyecciones de virulentos cultivos que asesinarían l. Los descubrimientos de virus que vacunaban contra estas enfermedades ahorraron a Francia millones de dólares cada año. Continuó con el desarrollo de la bacteriología y su relación con la enfermedad. Habiendo estudiado muchos casos de niños hospitalizados con fiebre, declaró ante la sociedad médica que había encontrado su causa y dibujó un diseño semejante a un rosario que conocemos como un estreptococo, o cadena cocos. 

Descubrió otro coco (marrón) forma de microbios patológicos, algunos de los cuales se organizaban como racimo de uvas, los llamó estafilococo. Por último llegó su trabajo sobre la rabia. Incapaz de encontrar la causa de la enfermedad, que aún no había sido descubierta, tuvo éxito preparando con vértebras disecadas de animales muertos un virus que vacunaba contra la enfermedad, el cual protegía a los seres humanos atacados por un animal rabioso contra el desarrollo de la rabia. Este tratamiento encontró una dura oposición. Sus trabajos sobre la fermentación y la generación espontánea tuvieron importantes consecuencias para la medicina, ya que él opinaba que el origen y evolución de las enfermedades eran análogos a los del proceso de fermentación. Es decir, consideraba que la enfermedad surge por el ataque de gérmenes procedentes del exterior del organismo, del mismo modo que los microorganismos no deseados invaden la leche y causan su fermentación. 


La tercera época en la historia de la biotecnología se caracteriza por desarrollos en cierto sentido opuestos, ya que por un lado la expansión vertiginosa de la industria petroquímica tiende a desplazar los procesos biotecnológicos de la fermentación, pero por otro, el descubrimiento de la penicilina por Fleming en 1928, sentaría las bases para la producción en gran escala de antibióticos, a partir de la década de los años cuarenta. Un segundo desarrollo importante de esa época es el comienzo, en la década de los años treinta, de la aplicación de variedades híbridas en la zona maicera de los Estados Unidos ("corn belt"), con espectaculares incrementos en la producción por hectárea, iniciándose así el camino hacia la "revolución verde" que alcanzaría su apogeo 30 años más tarde. 


 ERA DE LOS ANTIBIÓTICOS.

 La tercera época en la historia de la biotecnología se caracteriza por desarrollos en cierto sentido opuestos, ya que por un lado la expansión vertiginosa de la industria petroquímica tiende a desplazar los procesos biotecnológicos de la fermentación, pero por otro, el descubrimiento de la penicilina por Fleming en 1928, sentaría las bases para la producción en gran escala de antibióticos, a partir de la década de los años cuarenta. Un segundo desarrollo importante de esa época es el comienzo, en la década de los años treinta, de la aplicación de variedades híbridas en la zona maicera de los Estados Unidos ("corn belt"), con espectaculares incrementos en la producción por hectárea, iniciándose así el camino hacia la "revolución verde" que alcanzaría su apogeo 30 años más tarde. Generalidades.

 "El término antibiótico fue propuesto por WASMAN, descubridor de la estreptomicina, para definir sustancias dotadas de actividad antimicrobiana y extraídas de estructuras orgánicas vivientes." 

La búsqueda de antecedentes previos demuestra que en 1889 VUILLEMIN, en un trabajo titulado Antibiose et symbiose, crea el término antibiosis para describir la lucha entre seres vivos para la supervivencia. Más tarde, WARD adopta esta palabra para describir el antagonismo microbiano. Con posterioridad, ya en plena era antibiótica, el término significó, durante algún tiempo, sustancia extraída de seres vivos, ya fueren bacterias, hongos, algas, con capacidad para anular la vida de diversos microorganismos. El antibiótico viene de un mundo vivo. Pero el avance de la técnica, el conocimiento progresivo de las fórmulas de diversos antibióticos, la posibilidad de su preparación sintética partiendo de bases químicas desdibujaron valor del origen de los mismos. Antibióticos.

 Las sustancias medicinales seguras tienen el poder para destruir o verificar el crecimiento de organismos infecciosos en el cuerpo. Los organismos pueden ser bacterias, virus, hongos, o los animales minúsculos llamaron protozoa. Un grupo particular de estos agentes se constituye de drogas llamado los antibióticos, desde el Griego anti ("contra") y bios ("vida"). Algunos antibióticos se producen desde organismos vivientes tales como bacterias, hongos, y moldes. Los otros son totalmente o en parte sintéticos que es, producidos artificialmente. La penicilina es quizás el mejor antibiótico conocido. Su descubrimiento y luego desarrollo ha permitido a la profesión médica tratar efectivamente muchas enfermedades infecciosas, incluyendo algunas que alguna vez amenazaron la vida.


 ERA DE LOS POST-ANTIBIOTICOS 

La cuarta era de la biotecnología es la actual. Se inicia con el descubrimiento de la doble estructura axial del ácido "deoxi-ribonucleico" (ADN) por Crick y Watson en 1953, seguido por los procesos que permiten la inmovilización de las enzimas, los primeros experimentos de ingeniería genética realizados por Cohen y Boyer en 1973 y aplicación en 1975 de la técnica del "hibridoma" para la producción de anticuerpos "monoclonales", gracias a los trabajos de Milstein y Kohler. 

 Estos han sido los acontecimientos fundamentales que han dado origen al auge de la biotecnología a partir de los años ochenta. Su aplicación rápida en áreas tan diversas como la agricultura, la industria alimenticia, la farmacéutica, los procesos de diagnóstico y tratamiento médico, la industria química, la minería y la informática, justifica las expectativas generadas en torno de estas tecnologías. Un aspecto fundamental de la nueva biotecnología es que es intensiva en el uso del conocimiento científico. Las nuevas biotecnologías pueden agruparse en cuatro categorías básicas:

 • Técnicas para el cultivo de células y tejidos.
 • Procesos biotecnológicos, fundamentalmente de fermentación, y que incluyen la técnica de inmovilización de enzimas. 
• Técnicas que aplican la microbiología a la selección y cultivo de células y microorganismos.
• Técnicas para la manipulación, modificación y transferencia de materiales genéticos (ingeniería genética).

Aunque los cuatro grupos se complementan entre sí, existe una diferencia fundamental entre los tres primeros y el cuarto. Los primeros se basan en el conocimiento de las características y comportamiento y los microorganismos y en el uso deliberado de estas características (de cada organismo en particular), para el logro de objetivos específicos en el logro de nuevos productos o procesos. La enorme potencialidad del último grupo se deriva de la capacidad de manipular las características estructurales y funcionales de los organismos y de aplicación práctica de esta capacidad para superar ciertos límites naturales en el desarrollo de nuevos productos o procesos. Desde un punto algo diferente, es posible agrupar las tecnologías que forman parte de la biotecnología en los seis grupos siguientes: 

• Cultivos de tejidos y células para: la rápida micropropagación "in vitro" de plantas, la obtención de cultivos sanos, el mejoramiento genético por cruza amplia, la preservación e intercambio de "germoplasma", la "biosíntesis" de "metabolitos" secundarios de interés económico y la investigación básica. 

• El uso de enzimas o fermentación microbiana, para la conservación de materia primas definidas como sustratos en determinados productos, la recuperación de estos productos, su separación de los caldos de fermentación y su purificación final. 

• Tecnología del "hibridoma", que se refiere a la producción, a partir de "clones", de anticuerpos de acción muy específica que reciben el nombre de anticuerpos "monoclonales". 
• Ingeniería de proteínas, que implica la modificación de la estructura de las proteínas para mejorar su funcionamiento o para la producción de proteínas totalmente nuevas.
• Ingeniería genética o tecnología del "ADN", que consiste en la introducción de un "ADN" híbrido, que contiene los genes de interés para determinados propósitos, para capacitar a ciertos organismos en la elaboración de productos específicos, ya sean estos enzimas, hormonas o cualquier otro tipo de proteína u organismo.
 • Bioinformática, que se refiere a la técnica basada en la utilización de proteínas en aparatos electrónicos, particularmente sensores biológicos y "bioships"; es decir, "microchips" biológicos, capaces de lógica y memoria. A diferencia de la primera clasificación, que señala las técnicas propiamente tales, la segunda se refiere también a las actividades económicas en las que se hace uso de dichas tecnologías. 

La nueva biotecnología crea nuevos procesos y nuevos productos en diversas áreas de la economía. Como estos procesos se basan en los mismos principios, ya sea que se apliquen en un sector económico o en otro, ello introduce cierto grado de flexibilidad, ya que permite la movilidad entre diferentes sectores. Por ejemplo, los procesos de fermentación pueden aplicarse para la producción, en gran escala, de alcohol o de antibióticos como la penicilina, o en escalas menores para la producción de aminoácidos o en la industria farmacéutica. Esto facilita la movilidad de factores productivos y tiene impacto sobre la calificación de la mano de obra, la cual, aun cuando deberá adaptarse a este nuevo perfil tecnológico (tanto en términos cuantitativos como cualitativos) posiblemente logre al mismo tiempo una mayor facilidad de empleo. A nivel mundial el interés por la biotecnología es indudable, como se ve a través del frecuente abordaje de tales temas en los periódicos, libros y medios de comunicación.

 LA NUEVA BIOTECNOLOGÍA. 

Todos hemos escuchado hablar del término ingeniería genética. Los medios de información nos bombardean con descripciones de descubrimientos asombrosos, y en ocasiones, plantean escenarios de desastre, propiciados por una maligna intervención del hombre para alterar la naturaleza. 

En realidad, si lo meditamos con cuidado, el ser humano siempre ha interferido con los procesos naturales propios y de otras especies. ¿De dónde proviene, si no, la gran variedad de razas caninas, por ejemplo? ¿Y no era un serio intrometimiento con el proceso practicar repetidas sangrías al enfermo a la menor provocación? La administración de antibióticos para salvar innumerables vidas humanas, ¿no significa una definitiva interferencia con los procesos naturales? Lo que sí resulta claro es que la capacidad de manipulación, no siempre basada en el conocimiento, está aumentando continuamente. 

En particular, durante los últimos 15 a 20 años ha sido notable un avance sin precedente en el campo de las ciencias biológicas. Esto se debe fundamentalmente al surgimiento de las técnicas de ingeniería genética o ADNrecombinante. Una característica importante de la ciencia biológica es que constituye una área de conocimiento relativamente nueva. ¿A qué se debe esto? ¿Cómo es, nos preguntamos, que en la era espacial y de las computadoras, no sabemos curar ni un catarro común? Parte de la respuesta estriba en la inmensa complejidad de cualquier sistema biológico.

 La célula más simple está constituida por cientos de miles de moléculas diferentes, que son entidades pequeñísimas, en continua transformación. Existe además un constante dinamismo en la composición del material viviente, mediado por interacciones moleculares de increíble sutileza, sujetas a una compleja y estricta regulación. Por esta razón, se requirieron instrumentos propios de la era tecnológica (por ejemplo, el microscopio), para empezar a atisbar en la estructura de estos sistemas. Se ha requerido del avance concertado de la física, la química, la ciencia de materiales, y del progreso económico para poder acceder a la tecnología necesaria para el estudio de los sistemas vivientes. 

Otro hecho destacado es que la investigación científica tiene la particularidad de ir acumulando preguntas que no es posible resolver con la tecnología del momento; pero en cuanto ésta progresa, se agolpan las soluciones de muchas preguntas y, rápidamente, surgen otras nuevas. Una de estas técnicas o metodologías, que establece un parteaguas en la capacidad de indagación sobre los seres vivos es, precisamente, la ingeniería genética. Para entender cabalmente la importancia central de esta nueva metodología es útil revisar algunos conceptos básicos sobre las moléculas de la vida y lo que se conocía antes de que surgiera esa disciplina. 

LAS MOLÉCULAS DE LA VIDA 

Através de varios miles de millones de años de evolución, la diversidad biológica nos resulta apabullante y asombrosa. Cada organismo vivo, desde un ser humano hasta una pequeña planta, una bacteria o una mosca, parece ser una invención única y diferente. Si observamos con cuidado, sin embargo, detectamos muchos elementos en común. La clasificación de los seres vivos en reinos, órdenes, géneros, etc., obedece precisamente a esta clara noción de que los organismos vivos se parecen unos a otros. 

En el nivel molecular, los seres vivos se parecen increíblemente. Es de la combinación y concierto de interacciones de los mismos tipos de moléculas que un ser vivo difiere de otro. Esto es similar al caso de las computadoras (especialmente los programas que corren en ellas), que pueden diferenciarse notablemente unas de otras, a pesar de estar constituidas por circuitos o instrucciones muy similares. Las moléculas de la vida surgieron hace quizá 3 ó 4 mil millones de años. Sus características y sus interacciones fundamentales han sido alteradas muy poco en todo este tiempo. 

De manera similar al crecimiento y evolución de una ciudad, un ser vivo no se puede "reinventar" continuamente. La evolución ha ocurrido partiendo de lo que ya hay, con modificaciones paulatinas. En la Roma de hoy distinguimos calles que transitó Julio César; en nuestras células hay funciones moleculares afines surgidas hace 3 mil millones de años. ¿Cuáles son estas moléculas centrales, unificadoras? En lo que resta de este capítulo, me propongo describir algunas de ellas, pero antes debo hacer algunas aclaraciones al lector. Para entender los fenómenos biológicos no se requiere, como en otras disciplinas (por ejemplo, la física o la química), el manejo de conceptos abstractos o el dominio de las matemáticas. Por otra parte, la complejidad de los sistemas biológicos sí necesita un vocabulario especial. 

Más aún, la amplitud y profundidad con la que comprenden hoy los biólogos la naturaleza es realmente impresionante. Confío en que las descripciones de naturaleza técnica, inevitables para hablar un lenguaje común y para que la presentación del material que nos ocupa no resulte trivial, sean accesibles al lector. Creo que la recompensa de cubrir los pasajes más rudos será una percepción más cabal de la belleza y relevancia de los recientes descubrimientos. Como dijera Albert Einstein: "Las cosas deben ponerse tan simples como sea posible. Pero no más simples."

No hay comentarios:

Publicar un comentario